STATE OF HAWAII, DEPARTMENT OF DEFENSE
HAWAII ARMY NATIONAL GUARD
VEHICLE WASH RACK AT BLDG. 117B, KALAELOA, HI
91-1171 ENTERPRISE AVENUE, KAPOLEI, OAHU, 96707

CONTRACT NO.: FEDERAL: 15140032 STATE: CA-1424-C

SPECIFICATIONS

12 May 2016
STATE OF HAWAII, DEPARTMENT OF DEFENSE
HAWAII ARMY NATIONAL GUARD
VEHICLE WASH RACK AT BLDG. 117B,
KALAELOA, HI

91-1171 ENTERPRISE AVENUE, KAPOLEI, OAHU, 96707

Federal Contract No: 15140032
State Contract No: CA-1424-C

MILAN RADANOVIĆ
LICENSED PROFESSIONAL ENGINEER
No. 12472-E

Sign: [Signature]
Date: 5/1/2016
This work was prepared by me or under my supervision.
Expiration date of License: 4/30/2018

MICHAEL J. SMITH
LICENSED PROFESSIONAL ENGINEER
No. 18991-C

Sign: [Signature]
Date: 5/1/2016
This work was prepared by me or under my supervision.
Expiration date of License: 4/30/2018

ALBERT E. KETTNER
LICENSED PROFESSIONAL ENGINEER
No. 14694-M

Sign: [Signature]
Date: 5/1/2016
This work was prepared by me or under my supervision.
Expiration date of License: 4/30/2018

JOHN D. WESTERMEIER
LICENSED PROFESSIONAL ENGINEER
No. 13074-S

Sign: [Signature]
Date: 5/1/2016
This work was prepared by me or under my supervision.
Expiration date of License: 4/30/2018
SPECIFICATIONS TABLE OF CONTENTS

DIVISION 02 - EXISTING CONDITIONS
024119 SELECTIVE DEMOLITION

DIVISION 03 - CONCRETE
033000 CAST-IN-PLACE CONCRETE

DIVISION 09 - FINISHES
099600 HIGH PERFORMANCE COATINGS

DIVISION 13 - SPECIAL CONSTRUCTION
133419 METAL BUILDING SYSTEMS
136000 VEHICLE WASH RACK EQUIPMENT

DIVISION 22 - PLUMBING
221113 FACILITY WATER DISTRIBUTION PIPING
221116 DOMESTIC WATER PIPING
221313 FACILITY SANITARY SEWERS

DIVISION 26 - ELECTRICAL
260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260523 CONTROL-VOLTAGE ELECTRICAL POWER CABLES
260526 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260543 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
260553 IDENTIFICATION FOR ELECTRICAL SYSTEMS
260923 LIGHTING CONTROL DEVICES
262726 WIRING DEVICES
263100 PHOTOVOLTAIC SYSTEM EQUIPMENT
265119 LED INTERIOR LIGHTING
265600 EXTERIOR LIGHTING

DIVISION 31 - EARTHWORK
312000 EARTH MOVING

DIVISION 32 - EXTERIOR IMPROVEMENTS
321216 ASPHALT PAVING
321313 CONCRETE PAVING
321373 CONCRETE PAVING JOINT SEALANTS
323113 CHAIN LINK FENCES AND GATES

DIVISION 33 - UTILITIES
330500 COMMON WORK RESULTS FOR UTILITIES
SELECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Demolition and removal of selected site elements.

1.2 MATERIALS OWNERSHIP

A. Unless otherwise indicated, demolition waste becomes property of Contractor.

B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Government that may be uncovered during demolition remain the property of Government.

1. Carefully salvage in a manner to prevent damage and promptly return to Government.

1.3 PREINSTALLATION MEETINGS

A. Predemolition Conference: Conduct conference at Project site.

B. Notify Contracting Officers’ Representative (COR) of discrepancies between existing conditions and Drawings before proceeding with selective demolition.

C. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.

1. If suspected hazardous materials are encountered, do not disturb; immediately notify COR. Hazardous materials will be removed by Government under a separate contract.

D. Storage or sale of removed items or materials on-site is not permitted.

E. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.

1. Maintain fire-protection facilities in service during selective demolition operations.

F. Arrange selective demolition schedule so as not to interfere with Government's operations.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that utilities have been disconnected and capped before starting selective demolition operations.

3.2 PREPARATION

3.3 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.

B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.

1. Arrange to shut off utilities with utility companies.

 a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.

 b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place.

 c. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.

 d. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material and leave in place.

3.4 PROTECTION

A. Temporary Protection: Provide temporary barricades and other protection required to prevent injury to people and damage to adjacent buildings and facilities to remain.

B. Remove temporary barricades and protections where hazards no longer exist.

12 May 2016

SELECTIVE DEMOLITION

024119 - 2
3.5 SELECTIVE DEMOLITION

A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations:

1. Neatly cut openings and holes plumb, square, and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction.
2. Dispose of demolished items and materials promptly.

B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

3.6 CLEANING

A. Remove demolition waste materials from Project site and dispose of them in an EPA-approved construction and demolition waste landfill acceptable to authorities having jurisdiction.

1. Do not allow demolished materials to accumulate on-site.
2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. Burning: Do not burn demolished materials.

C. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

END OF SECTION 024119
SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

B. Related Requirements:

1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Design Mixtures: For each concrete mixture.

C. Steel Reinforcement Shop Drawings: Placing Drawings that detail fabrication, bending, and placement.

1.3 INFORMATIONAL SUBMITTALS

A. Material certificates.

B. Material test reports.

C. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer, detailing fabrication, assembly, and support of formwork.

D. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

B. Testing Agency Qualifications: An independent agency, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
1.5 PRECONSTRUCTION TESTING
 A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on concrete mixtures.

1.6 FIELD CONDITIONS
 A. Cold-Weather Placement: Comply with ACI 306.1.
 1. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
 B. Hot-Weather Placement: Comply with ACI 301.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL
 A. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 1. ACI 301.
 2. ACI 117.

2.2 FORM-FACING MATERIALS
 A. Smooth-Formed Finished Concrete: Form-facing panels that provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.3 STEEL REINFORCEMENT
 A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
 B. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
 C. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
 D. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from as-drawn steel wire into flat sheets.
2.4 CONCRETE MATERIALS

A. Regional Materials: Concrete shall be manufactured within 500 miles of Project site from aggregates and cementitious materials that have been extracted, harvested, or recovered, as well as manufactured, within 500 miles of Project site.

B. Cementitious Materials:
 2. Fly Ash: ASTM C 618, Class F.
 3. Slag Cement: ASTM C 989/C 989M, Grade 100 or 120.

C. Normal-Weight Aggregates: ASTM C 33/C 33M, graded.
 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

D. Air-Entraining Admixture: ASTM C 260/C 260M.

E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

F. Water: ASTM C 94/C 94M.

2.5 VAPOR RETARDERS

A. Sheet Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 15 mils thick.

2.6 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. BASF Corporation; Construction Systems.
 b. Bon Tool Co.
 c. Brickform; a division of Solomon Colors.
 d. ChemMasters, Inc.
 e. Dayton Superior.
 f. Euclid Chemical Company (The); an RPM company.
 g. Kaufman Products, Inc.
 h. L&M Construction Chemicals, Inc.
 i. Lambert Corporation.
 j. Metalcocrete Industries.
 k. Nox-Crete Products Group.
 l. Sika Corporation.
 m. SpecChem, LLC.
 n. TK Products.
 o. Vexcon Chemicals Inc.

B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

D. Water: Potable.

E. **Clear, Waterborne, Membrane-Forming Curing Compound:** ASTM C 309, Type 1, Class B, dissipating.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Anti-Hydro International, Inc.
 b. BASF Corporation; Construction Systems.
 c. ChemMasters, Inc.
 d. Dayton Superior.
 e. Euclid Chemical Company (The); an RPM company.
 f. Kaufman Products, Inc.
 g. L&M Construction Chemicals, Inc.
 h. Lambert Corporation.
 i. Nox-Crete Products Group.
 j. Right Pointe.
 k. SpecChem, LLC.
 l. TK Products.
 m. Vexcon Chemicals Inc.
 n. W. R. Meadows, Inc.

F. **Clear, Waterborne, Membrane-Forming Curing Compound:** ASTM C 309, Type 1, Class B, nondissipating.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Anti-Hydro International, Inc.
 b. BASF Corporation; Construction Systems.
 c. ChemMasters, Inc.
 d. Cresset Chemical Company.
 e. Dayton Superior.
 f. Euclid Chemical Company (The); an RPM company.
 g. Kaufman Products, Inc.
 h. L&M Construction Chemicals, Inc.
 i. Lambert Corporation.
 j. Metalcrete Industries.
 k. Nox-Crete Products Group.
 l. SpecChem, LLC.
 m. TK Products.
 n. Vexcon Chemicals Inc.
 o. W. R. Meadows, Inc.

G. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 25 percent solids, nondissipating.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AWRC Corporation.
 b. BASF Corporation; Construction Systems.
 c. ChemMasters, Inc.
 d. Dayton Superior.
 e. Euclid Chemical Company (The); an RPM company.
 f. L&M Construction Chemicals, Inc.
 g. Lambert Corporation.
 h. Metalcrete Industries.
 i. Nox-Crete Products Group.
 j. SpecChem, LLC.
 k. Vexcon Chemicals Inc.
 l. W. R. Meadows, Inc.

H. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. BASF Corporation; Construction Systems.
 b. ChemMasters, Inc.
 c. Dayton Superior.
 d. Euclid Chemical Company (The); an RPM company.
 e. Kaufman Products, Inc.
 f. L&M Construction Chemicals, Inc.
 g. Lambert Corporation.
2. Curing and sealing compounds shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

I. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AWRC Corporation.
 b. BASF Corporation; Construction Systems.
 c. ChemMasters, Inc.
 d. Dayton Superior.
 e. Euclid Chemical Company (The); an RPM company.
 f. Kaufman Products, Inc.
 g. L&M Construction Chemicals, Inc.
 h. Lambert Corporation.
 i. Metalcrete Industries.
 j. Right Pointe.
 k. SpecChem, LLC.
 l. TK Products.
 m. Vexcon Chemicals Inc.
 n. W. R. Meadows, Inc.

2. Curing and sealing compounds shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.7 RELATED MATERIALS

2.8 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
B. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.

C. Admixtures: Use admixtures according to manufacturer's written instructions.
 1. Use water-reducing admixture in concrete, as required, for placement and workability.
 2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a w/c ratio below 0.50.

2.9 FABRICATING REINFORCEMENT
 A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.10 CONCRETE MIXING
 A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M, and furnish batch ticket information.
 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION
 A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
 B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
 C. Chamfer exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEM INSTALLATION
 A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
3.3 VAPOR-RETARDER INSTALLATION

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.

1. Lap joints 6 inches and seal with manufacturer's recommended tape.

3.4 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.

D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections are completed.

B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.

1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
3.7 FINISHING FORMED SURFACES

A. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

1. Apply to concrete surfaces exposed to public view.

B. Rubbed Finish: Apply the following to smooth-formed-finished as-cast concrete where indicated:

1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.

2. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix 1 part portland cement and 1 part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches, so color of dry grout matches adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.

C. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING FLOORS AND SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power-driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

1. Apply float finish to surfaces to receive trowel finish.

C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces exposed to view.

2. Finish and measure surface, so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.-long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/4 inch.
D. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces indicated. While concrete is still plastic, slightly scarify surface with a fine broom.

1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.

E. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.9 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.

D. Cure concrete according to ACI 308.1, by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

 a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.
3.10 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.11 FIELD QUALITY CONTROL

A. Special Inspections: Contractor will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

END OF SECTION 033000
SECTION 099600 - HIGH-PERFORMANCE COATINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes surface preparation and the application of high-performance coating systems on the following substrates:

1. Exterior Substrates:
 a. Steel.
 b. Galvanized metal.

B. Related Requirements:

1. Section 1133419 “Metal Building Systems” for shop priming of structural steel with primers specified in this Section.

1.3 DEFINITIONS

A. MPI Gloss Level 6: 70 to 85 units at 60 degrees, according to ASTM D 523.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

1. Include printout of current "MPI Approved Products List" for each product category specified, with the proposed product highlighted.
2. Indicate VOC content.

B. Samples for Initial Selection: For each type of topcoat product indicated.

C. Samples for Verification: For each type of coating system and each color and gloss of topcoat indicated.

1. Submit Samples on rigid backing, 8 inches square.
2. Apply coats on Samples in steps to show each coat required for system.
3. Label each coat of each Sample.
4. Label each Sample for location and application area.
This Page Intentionally Left Blank
D. Product List: Cross-reference to coating system and locations of application areas. Use same designations indicated on Drawings and in schedules. Include color designations.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Coatings: 5 percent, but not less than 1 gal. of each material and color applied.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.

1. Maintain containers in clean condition, free of foreign materials and residue.
2. Remove rags and waste from storage areas daily.

1.7 FIELD CONDITIONS

A. Apply coatings only when temperature of surfaces to be coated and ambient air temperatures are between 50 and 95 deg F.

B. Do not apply coatings when relative humidity exceeds 85 percent; at temperatures less than 5 deg F above the dew point; or to damp or wet surfaces.

C. Do not apply exterior coatings in snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Benjamin Moore & Co.
2. Devoe Paint Company; Akzo Nobel.
3. Dulux (formerly ICI Paints); a brand of AkzoNobel.
4. PPG Architectural Finishes, Inc.
5. Rust-Oleum Corporation; a subsidiary of RPM International, Inc.
7. Tnemec Inc.
2.2 HIGH-PERFORMANCE COATINGS, GENERAL

A. MPI Standards: Products shall comply with MPI standards indicated and shall be listed in its "MPI Approved Products Lists."

B. Material Compatibility:
 1. Materials for use within each paint system shall be compatible with one another and substrates indicated, under conditions of service and application as demonstrated by manufacturer, based on testing and field experience.
 2. For each coat in a paint system, products shall be recommended in writing by topcoat manufacturers for use in paint system and on substrate indicated.
 3. Products shall be of same manufacturer for each coat in a coating system.

C. Colors: As selected by Architect from manufacturer's full range.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.

B. Verify suitability of substrates, including surface conditions and compatibility, with existing finishes and primers.

C. Proceed with coating application only after unsatisfactory conditions have been corrected.
 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Comply with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual" applicable to substrates and coating systems indicated.

B. Clean substrates of substances that could impair bond of coatings, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce coating systems indicated.

C. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer

D. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and areas where shop paint is abraded. Paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
E. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied coatings.

3.3 APPLICATION

A. Apply high-performance coatings according to manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual."

1. Use applicators and techniques suited for coating and substrate indicated. If tinting is not required, delete first paragraph below. Different tints will show through as topcoat erodes.

B. Tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of the same material are to be applied. Tint undercoats to match color of finish coat, but provide sufficient difference in shade of undercoats to distinguish each separate coat.

C. If undercoats or other conditions show through final coat, apply additional coats until cured film has a uniform coating finish, color, and appearance.

D. Apply coatings to produce surface films without cloudiness, spotting, holidays, laps, brush marks, runs, sags, ropiness, or other surface imperfections. Produce sharp glass lines and color breaks.

3.4 FIELD QUALITY CONTROL

A. Dry Film Thickness Testing: Government may engage the services of a qualified testing and inspecting agency to inspect and test coatings for dry film thickness.

1. Contractor shall touch up and restore coated surfaces damaged by testing.
2. If test results show that dry film thickness of applied coating does not comply with coating manufacturer's written recommendations, Contractor shall pay for testing and apply additional coats as needed to provide dry film thickness that complies with coating manufacturer's written recommendations.

3.5 CLEANING AND PROTECTION

A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.

B. After completing coating application, clean spattered surfaces. Remove spattered coatings by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.

C. Protect work of other trades against damage from coating operation. Correct damage to work of other trades by cleaning, repairing, replacing, and recoating, as approved by Architect, and leave in an undamaged condition.
D. At completion of construction activities of other trades, touch up and restore damaged or defaced coated surfaces.

3.6 EXTERIOR HIGH-PERFORMANCE COATING SCHEDULE

A. Steel Substrates:

1. Pigmented Polyurethane over High-Build Epoxy System MPI EXT 5.1J:
 a. Prime Coat: Primer, epoxy, anti-corrosive, for metal, MPI #101.
 b. Intermediate Coat: Epoxy, high build, low gloss, MPI #108.
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6), MPI #72.

B. Galvanized-Metal Substrates:

1. Pigmented Polyurethane over Vinyl Wash Primer and Epoxy Primer System MPI EXT 5.3D:
 b. Intermediate Coat: Primer, epoxy, anti-corrosive, for metal, MPI #108.
 c. Topcoat: Polyurethane, two component, pigmented, gloss (MPI Gloss Level 6), MPI #72.

END OF SECTION 099600
SECTION 133419 - METAL BUILDING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Structural-steel framing.
 2. Accessories.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of metal building system component.

B. Shop Drawings: Indicate components by others. Include full building plan, elevations, sections, details and attachments to other work.

C. Delegated-Design Submittal: For metal building systems.
 1. Include analysis data indicating compliance with performance requirements and design data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Letter of Design Certification: Signed and sealed by a qualified professional engineer. Include the following:
 1. Name and location of Project.
 2. Order number.
 3. Name of manufacturer.
 4. Name of Contractor.
 5. Building dimensions including width, length, height, and roof slope.
 6. Indicate compliance with AISC standards for hot-rolled steel and AISI standards for cold-rolled steel, including edition dates of each standard.
 8. Design Loads: Include dead load, roof live load, collateral loads, roof snow load, deflection, wind loads/speeds and exposure, seismic design category or effective peak velocity-related acceleration/peak acceleration, and auxiliary loads (cranes).
9. Load Combinations: Indicate that loads were applied acting simultaneously with concentrated loads, according to governing building code.

C. Material test reports.
D. Source quality-control reports.
E. Field quality-control reports.
F. Sample warranties.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer.
 1. Accreditation: Manufacturer's facility accredited according to the International Accreditation Service's AC472, "Accreditation Criteria for Inspection Programs for Manufacturers of Metal Building Systems."
 2. Engineering Responsibility: Preparation of comprehensive engineering analysis and Shop Drawings by a professional engineer who is legally qualified to practice in jurisdiction where Project is located.

B. Erector Qualifications: An experienced erector who specializes in erecting and installing work similar in material, design, and extent to that indicated for this Project and who is acceptable to manufacturer.

C. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 2. AWS D1.3, "Structural Welding Code - Sheet Steel."

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 2. Ceco Building Systems; an NCI company.
2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design metal building system.

B. Structural Performance: Metal building systems shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to procedures in MBMA's "Metal Building Systems Manual."

1. Design Loads: As indicated on Drawings.
2. Deflection and Drift Limits: Design metal building system assemblies to withstand serviceability design loads without exceeding deflections and drift limits recommended in AISC Steel Design Guide No. 3 "Serviceability Design Considerations for Steel Buildings."
3. Deflection and Drift Limits: No greater than the following:
 b. Design secondary-framing system to accommodate deflection of primary framing and construction tolerances, and to maintain clearances at openings.
 c. Lateral Drift: Maximum of 1/400 of the building height.

C. Seismic Performance: Metal building system shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.3 STRUCTURAL-STEEL FRAMING

A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

B. Structural Steel: Comply with AISC 360, "Specification for Structural Steel Buildings."

C. Bolted Connections: Comply with RCSC's "Specification for Structural Joints Using High-Strength Bolts."

D. Cold-Formed Steel: Comply with AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members" for design requirements and allowable stresses.

E. Primary Framing: Manufacturer's standard primary-framing system, designed to withstand required loads and specified requirements. Primary framing includes transverse and lean-to frames; rafters and rake beams; sidewall, intermediate, end-wall, and corner columns; and wind bracing.

a. Slight variations in span and spacing may be acceptable if necessary to comply with manufacturer's standard, as approved by Architect.

2. Frame Configuration: Single gable.

F. Secondary Framing: Manufacturer's standard secondary framing, including purlins, girts, eave struts, flange bracing, base members, gable angles, clips, headers, jambs, and other miscellaneous structural members. Unless otherwise indicated, fabricate framing from either cold-formed, structural-steel sheet or roll-formed, metallic-coated steel sheet, prepainted with coil coating, to comply with the following:

G. Anchor Rods: Headed anchor rods as indicated in Anchor Rod Plan for attachment of metal building to foundation.

2.4 FABRICATION

A. General: Design components and field connections required for erection to permit easy assembly.

1. Mark each piece and part of the assembly to correspond with previously prepared erection drawings, diagrams, and instruction manuals.

2. Fabricate structural framing to produce clean, smooth cuts and bends. Punch holes of proper size, shape, and location. Members shall be free of cracks, tears, and ruptures.

C. Primary Framing: Shop fabricate framing components to indicated size and section, with baseplates, bearing plates, stiffeners, and other items required for erection welded into place. Cut, form, punch, drill, and weld framing for bolted field assembly.

D. Secondary Framing: Shop fabricate framing components to indicated size and section by roll forming or break forming, with baseplates, bearing plates, stiffeners, and other plates required for erection welded into place. Cut, form, punch, drill, and weld secondary framing for bolted field connections to primary framing.

E. Metal Panels: Fabricate and finish metal panels at the factory to greatest extent possible, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements. Comply with indicated profiles and with dimensional and structural requirements.

1. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of metal panel.
2.5 SOURCE QUALITY CONTROL

A. Special Inspection: Contractor will engage a qualified special inspector to perform source quality control inspections and to submit reports.

1. Accredited Manufacturers: Special inspections will not be required if fabrication is performed by an IAS AC472-accredited manufacturer approved by authorities having jurisdiction to perform such Work without special inspection.

B. Product will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ERECTION OF STRUCTURAL FRAMING

A. Erect metal building system according to manufacturer's written instructions and drawings.

B. Do not field cut, drill, or alter structural members without written approval from metal building system manufacturer's professional engineer.

C. Set structural framing accurately in locations and to elevations indicated, according to AISC specifications referenced in this Section. Maintain structural stability of frame during erection.

1. Set plates for structural members on wedges, shims, or setting nuts as required.
2. Tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
3. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

E. Align and adjust structural framing before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact with framing. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.
2. Make allowances for difference between temperature at time of erection and mean temperature when structure will be completed and in service.

F. Primary Framing and End Walls: Erect framing level, plumb, rigid, secure, and true to line. Level baseplates to a true even plane with full bearing to supporting structures, set with double-nutted anchor bolts. Use grout to obtain uniform bearing and to maintain a level base-line elevation. Moist-cure grout for not less than seven days after placement.
1. Make field connections using high-strength bolts installed according to RCSC's "Specification for Structural Joints Using High-Strength Bolts" for bolt type and joint type specified.
 a. Joint Type: Snug tightened or pretensioned as required by manufacturer.

G. Secondary Framing: Erect framing level, plumb, rigid, secure, and true to line. Field bolt secondary framing to clips attached to primary framing.
 1. Provide rake or gable purlins with tight-fitting closure channels and fasciae.
 2. Locate and space wall girts to suit openings such as doors and windows.
 3. Provide supplemental framing at entire perimeter of openings, including doors, windows, ventilators, and other penetrations of roof and walls.

H. Bracing: Install bracing in roof and sidewalls where indicated on erection drawings.
 1. Tighten rod and cable bracing to avoid sag.
 2. Locate interior end-bay bracing only where indicated.

I. Framing for Openings: Provide shapes of proper design and size to reinforce openings and to carry loads and vibrations imposed, including equipment furnished under mechanical and electrical work. Securely attach to structural framing.

J. Erection Tolerances: Maintain erection tolerances of structural framing within AISC 303.

3.2 ACCESSORY INSTALLATION

A. General: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components.
 1. Install components required for a complete metal roof panel assembly, including trim, copings, ridge closures, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.
 2. Install components for a complete metal wall panel assembly, including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.
 3. Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with corrosion-resistant coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by manufacturer.

3.3 FIELD QUALITY CONTROL

A. Special Inspections: Contractor will engage a qualified special inspector to perform field quality control special inspections and to submit reports.

B. Product will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 133419
SECTION 136000 – VEHICLE WASH RACK EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes Vehicle Wash Rack System:

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Submit a list specifying the manufacturer and product number of each major component of the filtration system and cut sheets with bid submittal so the government can verify quality components will be utilize. (Items that are private labeled must list the original equipment manufacturer as the manufacturer and list the OEM’s product number)

 2. Cut sheets and equipment manufacturer must be provided with the bid for the following components: oil water separator unit, concrete solids conveyor, oil water separator solids conveyor, media filter unit, oil skimmer unit, absolute filter, filter pump, ozone generator, recovery pump, PLC, HMI display, pressure washers, water cannons.

B. Shop Drawings: For vehicle wash rack system.
 1. Include plans, elevations, sections, and attachment and assembly details.
 2. Submit system drawings. Include detailed scaled site plan drawings including equipment locations, hose reels and remote panel locations.
 3. Include detailed drawings of filtration container.
 4. Include diagrams for power, signal, and control wiring.
 5. Show field measurements, locations and sizes of blocking and reinforcements, and attachments to other work.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installer and manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For vehicle wash rack system to include in operation and maintenance manuals.

12 May 2016
1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer.
 1. Manufacturer must have at least (3) similar conveyor wash systems functioning on the island of Oahu installed within the last 7 years at time of bid. Contractor must submit listing of these systems including address, point of contact with phone number.

B. Installer Qualifications: An experienced installer who specializes in erecting and installing work similar in material, design, and extent to that indicated for this Project and who is acceptable to manufacturer.
 1. Installer must have at least (3) similar conveyor wash systems functioning on the island of Oahu installed within the last 7 years at time of bid. Contractor must submit listing of these systems including address, point of contact with phone number.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of vehicle wash rack system that fail in materials or workmanship within specified warranty period.
 1. Parts and labor warranty covering entire system, breakdown items, pumps, filters, wands, hoses, including all consumable items except soap. Installing and equipment contractor must have a full time service technician located on Oahu and able to respond onsite within 8 hours.
 2. Failures include, but are not limited to, the following:
 a. Faulty operations of vehicle wash rack system, components or controls.
 b. Deterioration or corrosion of metals or metal finishes.
 3. Warranty Period: 2 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Vehicle Wash Rack System – Pre-approved Design Suppliers;
 1. Riveer Company, South Haven, MI
 2. EST Companies LLC, Tempe, AZ

2.2 SYSTEM DESCRIPTION

A. Collection and treatment equipment shall be manufactured in an ISO 9001-2008 facility.
B. System shall be modular, requiring minimal assembly. All equipment shall be pre-tested at OEM facility prior to shipment.
C. System shall be designed to minimize user interaction with the system. The user will only need to turn the pressure washer and water cannon on or off. The filtration system will automatically purge, backflush and inject ozone to control odor.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 SYSTEM INSTALLATION

A. Installation- Complete turnkey equipment installation. The contractor is responsible for all tools, labor, supplies and rental equipment to unload any provided equipment. Equipment supplier is responsible for the connection of equipment from in-ground stub ups to equipment supplier equipment. Equipment supplier requires no specialty permits or licenses for installation and hookup of equipment. Licensed contractors to perform concrete, underground plumbing and electrical work in addition to other work outside of the equipment suppliers scope of work.

2.4 GENERAL REQUIREMENTS

A. Riveer RTS 5000 Multi-Stage system shall be capable of treating wastewater at a process rate of 50 gallons per minute. Solids will be first separated from the water utilizing an in ground conveyor system. Water shall be recovered from sump via heavy duty Goulds sump pump to the 2600 gallon cone bottom settling tank and processed through the filtration system consisting of a stainless steel settling tank with weir walls and automatic solids removal conveyor, 500 square feet of coalescing material, disk skimmer and then sent through media filters (nominal filtration) and an absolute filter housing (absolute filtration) before being sent to single 2000 gallon roof mounted holding tank. (Mounted on Roof of ISO Container)

B. 2000 gallon filtered water holding tank will feed 2x cold water 3000 PSI pressure washers and 2x 25 GPM 100PSI water cannons. There will be a total of 2 remote control panels to control the pressure washers and water cannons. Stainless pedestal mounted hose reels with 50’ of hose will be provided for each pedestal.

C. 2’-0” wide automatic mud solids dewatering conveyor for each wash lane designed to automatically convey solids (separate from liquids) to a dewatering hopper. Solids conveyor should be 100% galvanized steel construction.

D. Contractor providing the solids conveyor shall also provide vehicle grating for trench and sump pit. Trench frames and grates/lids are furnished standard in Iron, Class 35-B for heavy-duty use and include mounting frames. Sump cover to be pedestrian rated aluminum cover.
 1. Trench grating shall be Neenah Foundry R-4990-JX or pre-approved equal. Grating is Type A with Type X Frame. Wash equipment supplier will provide grating with frames for contractor pouring concrete for placement.
 2. Sump cover shall be East Jordan Iron Works H36601101or pre-approved equal. Cover is aluminum double opening 36” x 60” with stainless hardware.

E. System shall not have consumable components such as cartridge filters, paper bed media filters, or bio-enzymes. These components are not considered “equal” in nature due to the cost.
F. System shall be built using the highest quality components utilizing stainless steel where possible. System will not contain low pressure media filters or plastic type pumps.

2.5 SYSTEM COMPONENTS

A. The system shall consist of the main components as follows:

1. New 45ft ISO container with the following:
 a. Aluminum insulated skin walls.
 b. 3x florescent type lights mounted to ceiling.
 c. Convenience outlet.
 d. Main disconnect on outside of container.
 e. Power Distribution System, Breaker panel inside of container.
 f. Ventilation System for climate control
 g. ISO container shall have integrated power distribution with the following spare breakers (5x 20amp 120v breakers and 1x 100amp 208v breaker) 5x 1” Coupling shall be mounted in the side of the container for the electrical contractor to utilize these breakers. The 100amp 208v (3Phase) shall be connected to an external 100amp disconnect as shown on the drawings. This wiring connecting the breaker to the disconnect shall be preinstalled by the equipment supplier.
 h. A minimum of 6’ wide x interior height of container shall be provided for possible mounting of solar inverter equipment. 4x 1” coupling shall be provided at 1’ height in this space for use by others.

2. Multi-chamber (850 gallon) 304 stainless steel settling and oil separation module with the following. RTS 5000 or pre-approved equal.
 a. 100% 304 stainless steel multi-chamber, 14 gauge construction settling tank. Plastic or aluminum will not be considered.
 b. All welds must be passivized.
 c. Capable of 50 GPM processing rate each.
 d. Settling and oil separation module including inclined plates for solids settling and separation sloped settling chamber.
 e. 850 gallon inlet settling tank
 1) Long dwell time promoting full settling of suspended solids.
 2) Laminar flow with velocity reducing inlet piping.
 3) 10 section tank with undercurrent design using stainless steel weir structures.
 4) 6 cu ft. of coalescing media, with over 600 ft.² of surface area.
 f. Integrated internal Mud removal system with 6” conveyor:
 1) Totally automatic operation.
 2) Automatically removes mud/solids to hopper inside of container.
 3) 1/2 HP 1100 RPM TEFC drive motor with thermal protection.
 4) Self dumping hopper, with HD fork pockets 1/4 cu yd 7gauge construction.
 g. Settling tank will automatically purge solids from tank at set times controlled via PLC. This will not require any user input.
 h. Chamber must include upper and lower float control in final section to allow for water balance.
i. Control panel for entire system will have Allen Bradley Panel View 10" HMI touchscreen display or larger. The HMI shall allow the user or maintenance tech to login and view and adjust all timers, view system status and all inputs / outputs.

3. High pressure media filter rated to 150 PSI operating pressure with the following:
 a. 100% composite fiberglass construction.
 b. Media Filter #1 to be filled with 8 cubic feet of media in three layers consisting of course stone, fine sand and Zeolite.
 c. Media Filter #2 to be filled with 8 cubic feet of carbon.
 d. Media filter must be capable of removing suspended solids to 50 micron nominal.
 e. Certified to NSF 61 Standards.
 f. Rated to minimum 600 PSI burst, 150 PSI operating pressure.
 g. Media filter must be capable of automatic back washing via PLC control timer utilizing air powered valves. This process is automatic and requires no user interaction. Electric valves will not be considered.

4. Stainless steel absolute filtration unit with the following:
 a. Dual absolute filtration units for addition filtration processing.
 b. Constructed of 304 Stainless Steel.
 c. Rated to 150 PSI.
 d. Canister styled absolute filtration unit using stainless steel housing capable of 5 micron zero bypass multilayer, non-proprietary filter.
 e. Digital pressure sensor with readout and connection to PLC for auto shut down when filter full and red indicator light to indicate full filter.
 f. Other rolled media filter type systems are no acceptable due to consumable costs. Absolute bag filter with cleanable bag filter is the only acceptable final filtration method.

5. Recovery System with the following:
 a. Heavy duty, Goulds brand or equal, trash pumps which are the designed for industrial applications and provide heavy solids handling.
 b. Alternate pumps must be submitted for approval as an “approved alternate”.
 c. Must have minimum 2” outlet

6. 25 GPM Water Cannon with the following:
 a. 2x Pumps, 1 per wash lane.
 b. Pumps must be high quality pumps such as Goulds or Pedrolo.
 c. Pump is controlled via remote panels located on wash pad.
 d. Pump must have bypass installed to prevent damage to pump.

7. Ozone system with automatic recirculation with the following:
 a. Odor control shall be achieved using an automatic PLC-controlled ozone injection system via corona discharge ozone generator.
 b. Minimum of one 2 cell ozone generator for the system.
 c. System must inject ozone into filtration system and 2600 gallon cone bottom tank, and 2000 gallon roof tank.
 d. DEL Ozone® generator with dual element Corona discharge elements and indicator lights.
e. Bio systems or other chemical injection systems will not be acceptable due to high consumable costs.

8. 2600 45 Degree gallon cone bottom water holding tank with the following:
 a. 2600 Gallon Cone Bottom Tank with stand.
 1) Must be green or black in color.
 2) Stand will be secured to concrete.
 3) Water is recovered into tank and overflows into RTS5000 Filtration System.
 4) Automatic air controlled purge valve.

9. 2000 gallon filtered water holding tank with floats with the following:
 a. 2000 gallon ISO container roof mounted tank.
 b. Must be green or black in color.
 c. Stand will be secured to 40’ ISO container.
 d. Manual purge valve

10. Filtration pumping system with the following:
 a. 1.5” outlet with y-strainer to prevent ingestion of foreign matter in pump.
 b. 50 GPM High Flow Goulds® high pressure filter pump using TEFC motor and stainless steel housing.
 c. High pressure limit switch and low water protection.
 d. Automatic start stop controlled via PLC.

11. QTY 2 Total Electric Hot Water Pressure Washer with the following:
 a. 4GPM @ 3000 PSI.
 b. CAT Pump or equal
 c. Belt Drive
 d. Thermal Protection
 e. Each Pressure Washer Must be Fed by Individual Pressured Line Feed Pump

12. Stainless Hose Reels and Control Panels with the following:
 a. Manual Rewind Hose Reels (4 Total)
 1) Stainless construction.
 2) 50’ Hose Capacity per reel. 1” Water Cannon Hose and 3/8” High Pressure Hose
 b. Remote Panels (QTY 2):
 1) Stainless steel NEMA4x construction (fiberglass NEMA 4x not acceptable).
 2) Remote panel mounted on stand-alone stainless stand.
 3) Remote panel to have on/off control for each reel full filter light. 1 remote panel to have conveyor controls and warning lights.

13. Electrical Panel View Display with Enclosure with the following:
 a. All IEC Allen-Bradley electrical components.
 b. Must have Allen Bradley 10” HMI Panel View Display for on-site adjustments and configuration.
 c. Allen Bradley NEMA4 switches with LED indicator lights.
 d. All electrical panels must be UL Listed.
14. Galvanized Trench Automatic Solids Conveyor System with the following:

 a. Automated conveyor to transfer debris to hopper permanently built into the wash area to remove large debris and mud. Conveyor moves slowly as to not create a slurry and effectively separate solids prior to first stage of filtration.

 b. 24” wide custom drag conveyor with wear flights to automatically scrape the mud from the trough to the hopper.

 c. System must separate solids from liquids prior to entering any part of the filtration system.

 d. PLC controlled with periodic auto advance.

 e. Auto/manual controls with Emergency Stop at remote panel.

 f. Conveyor start warning light and audible alarm

 g. Self-dumping ¼ yard de-watering mud hoppers with forklift pockets.

 h. Conveyor must be 100% galvanized construction.

 i. Conveyor must be chain drive conveyor with replaceable steel flights with rubber scraper

2.6 OUTDOOR PLUMBING

A. All outdoor plumbing will be plumbed according to the below specifications. Schedule 80 PVC.

PART 3 - EXECUTION

3.1 PREPARATION

A. Visit the worksite and become fully aware of all existing conditions.

B. Review the Contract Documents and make proper provisions to avoid interference and construction delays. Determine the exact route of each pipe. Make offsets and changes in direction required to maintain proper head room and pitch or to accommodate the structure and the work of other trades.

C. Furnish other trades with information to properly locate and size openings in the structure required for this work.

D. Furnish anchor bolts, sleeves, inserts and supports required for this work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION AND REQUIREMENTS

A. Perform work using personnel skilled in the trade involved.

B. Provide competent supervision.

C. Furnish new equipment, fixtures, materials and accessories bearing the manufacturer's identification and conforming to recognized commercial standards.
D. Provide guard around high-temperature equipment and materials.

E. When exposed to weather, provide a weather protected enclosure around electrical equipment, controls and other items that are not satisfactorily protected.

F. All required demolition, including saw cutting and chipping of concrete to remove or install fixtures and piping shall be provided as well as patching, repair and painting at no additional cost.

G. Provide all extra materials and labor for a complete operable system at no additional cost to the Government.

3.3 ACCESS TO EQUIPMENT

A. Install all control devices, specialties, valves and related items to provide easy access for operation, inspection, repair and maintenance.

3.4 EQUIPMENT INSTALLATION

A. Install equipment in the space allotted with sufficient clearance for proper operation and maintenance.

B. Where equipment differs in arrangement or connections from those shown, provide all required changes in piping, supports and appurtenances and cost of work of any other trades affected.

C. Provide equipment accessories necessary for proper pardon and support.

3.5 TESTING AND INSPECTION

A. Contractor shall furnish all equipment for testing and verifying specification. Tests shall be performed in presence of, and to satisfaction of, inspector of official agency involved.

B. Defective Work: If inspection or test shows defects, such defective work or material shall be replaced and inspection and tests repeated. Repairs to piping shall be made with new material. No caulking of screwed joints or holes will be accepted.

C. Protection to Fixtures, Materials, and Equipment Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, and chemical or mechanical injury. Upon completion of all work, fixtures, materials, and equipment shall be thoroughly cleaned, repainted as required, adjusted, and operated.

3.6 ADJUST AND CLEAN

A. Clean up work areas and fixtures.

B. Adjust system for proper operation, ready for use.
C. Touch up with matching paint all damaged factory finishes.

3.7 PAINTING AND IDENTIFYING OF PIPING

A. General: All non-factory finished (i.e. finished painted) items furnished under this section are to be painted. Do not paint over name plates or other identifying labels.

B. Identification of Piping: Provide piping identification for all above ground plumbing system piping.

C. Identification of Valves: Provide valve tags for all plumbing system.

3.8 INSTRUCTIONS

A. Instruct Government personnel in the proper operation and maintenance of the systems.

B. Review the maintenance manuals with the Government.

C. Submit a list of manufacturer's warranties for the equipment furnished.

3.9 TWO YEAR MAINTENANCE SERVICE AGREEMENT

A. Provide monthly maintenance service for all wash systems, plumbing systems and Reclaimed Water Treatment System components as specified in and in accordance with the requirements and schedule of the Government. The contractor is responsible for all consumable items and any required repairs for the equipment at no cost to the government for the first two years.

B. Service visits will be set on a scheduled basis with the Government.

C. Service tech will arrive in a fully stocked service vehicle and perform preventative maintenance checks, perform quarterly oil changes on wash equipment, replace filtration components as needed, perform breakdown maintenance.

END OF SECTION 136000
PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes water-distribution piping and related components outside the facility for water service.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements:

1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Contracting Officer’s Representative (COR) no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without COR’s written permission.
1.6 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 PIPE AND FITTINGS

A. PE, Fire-Service Pipe: ASTM F 714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG Class 200.

1. Molded PE Fittings: ASTM D 3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.

B. PVC, Schedule 80 Pipe: ASTM D 1785.

1. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
2. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.

2.2 JOINING MATERIALS

A. Refer to Section 330500 "Common Work Results for Utilities" for commonly used joining materials.

2.3 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:

1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.

2.4 CORPORATION VALVES AND CURB VALVES

A. Service-Saddle Assemblies: Comply with AWWA C800. Include saddle and valve compatible with tapping machine.

1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.

B. Curb Valves: Comply with AWWA C800. Include bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.

1. Shutoff Rods: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Flanges, unions, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

E. Underground water-service piping NPS 3/4 to NPS 3 (DN 20 to DN 80) shall be any of the following:

1. PE, ASTM pipe; molded PE fittings; and heat-fusion joints.
2. PVC, Schedule 80 pipe; PVC, Schedule 80 socket fittings; and solvent-cemented joints.

3.3 VALVE APPLICATIONS

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Use the following for valves in vaults and aboveground:

 a. Gate Valves, NPS 2 and Smaller: Bronze, rising stem.
3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 330500 "Common Work Results for Utilities" for piping-system common requirements.

3.5 PIPING INSTALLATION

A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections NPS 2 and smaller with drilling machine according to the following:
 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 4. Install corporation valves into service-saddle assemblies.
 5. Install manifold for multiple taps in water main.
 6. Install curb valve in water-service piping with head pointing up and with service box.

D. Bury piping with depth of cover over top at least 30 inches.

E. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

3.6 JOINT CONSTRUCTION

A. See Section 330500 "Common Work Results for Utilities" for basic piping joint construction.

B. Make pipe joints according to the following:
 1. PE Piping Insert-Fitting Joints: Use plastic insert fittings and fasteners according to fitting manufacturer's written instructions.
 2. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.
 3. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.
3.7 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
4. Bolted flanged joints.
5. Heat-fused joints.
6. Pipe clamps and tie rods.

B. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 CONNECTIONS

A. See Section 330500 "Common Work Results for Utilities" for piping connections to valves and equipment.

B. Connect water-distribution piping to existing water main. Use tapping sleeve and tapping valve or service clamp and corporation valve.

C. Connect water-distribution piping to interior domestic water piping.

3.9 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.10 CLEANING

A. Clean and disinfect water-distribution piping as follows:

1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

END OF SECTION 221113
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes under-slab domestic water pipes, tubes, and fittings.
B. Related Requirements:
 1. Section 221113 "Facility Water Distribution Piping" for water-service piping outside the building from source to the point where water-service piping enters the building.

1.2 INFORMATIONAL SUBMITTALS
A. System purging and disinfecting activities report.
B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 STAINLESS-STEEL PIPING
A. Potable-water piping and components shall comply with NSF 61 Annex G.
B. Stainless-Steel Pipe: ASTM A 312, Grade TP 304, Schedule 80S.
C. Stainless-Steel Pipe Fittings: Welded bevel ends ASTM A403, Grade WP 304, Schedule 80S.

2.3 PVC PIPE AND FITTINGS
A. PVC Pipe: ASTM D 1785, Schedule 80.
C. PVC Schedule 80 Threaded Fittings: ASTM D 2464.
2.4 PIPING JOINING MATERIALS

A. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install domestic water piping level without pitch and plumb.

C. Install piping free of sags and bends.

D. Install fittings for changes in direction.

E. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of stainless steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

D. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:

2. PVC Piping: Join according to ASTM D 2855.

3.4 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source.
and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.

e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.

f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Perform the following adjustments before operation:

1. Remove plugs used during testing of piping and for temporary sealing of piping during installation.

3.7 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping before using.

2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:

 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.

 b. Fill and isolate system according to either of the following:

 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.

 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.

 d. Repeat procedures if biological examination shows contamination.

 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.8 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Under-building-slab, high pressure washer piping, shall be the following:
 1. Stainless steel, ASTM A 312, Grade TP 304; welded-joint fittings.

C. Under-building-slab, water cannon, sump recovery, cone bottom purge, tank purge, and building-service piping, shall be the following:
 1. PVC, Schedule 80; socket fittings; and solvent-cemented joints.

END OF SECTION 221116
This Page Intentionally Left Blank
SECTION 221313 - FACILITY SANITARY SEWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure and pressure couplings.
 3. Cleanouts.

1.2 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:
 1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 2. Fittings: ASTM D 3034, PVC with bell ends.

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
 1. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 2. For Concrete Pipes: ASTM C 443, rubber.
 3. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 4. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
C. Unshielded, Flexible Couplings:
 1. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-
 metal tension band and tightening mechanism on each end.

D. Ring-Type, Flexible Couplings: Elastomeric compression seal with dimensions to fit inside bell
 of larger pipe and for spigot of smaller pipe to fit inside ring.

2.3 CLEANOUTS

A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and
 round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot
 connection and countersunk, tapered-thread, brass closure plug.

 1. Top-Loading Classification(s): Heavy Duty.
 2. Sewer Pipe Fitting and Riser to Cleanout: SDR 35 PVC.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and
 arrangement of underground sanitary sewer piping. Location and arrangement of piping layout
 take into account design considerations. Install piping as indicated, to extent practical. Where
 specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken
 continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves,
 and couplings according to manufacturer's written instructions for using lubricants, cements,
 and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch
 connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes
 and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-
 jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:

 1. Install piping pitched down in direction of flow, at minimum slope of 2 percent unless
 otherwise indicated.
2. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.

G. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:

1. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
2. Join dissimilar pipe materials with nonpressure-type, flexible couplings.

B. Pipe couplings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Unshielded flexible couplings for pipes of same or slightly different OD.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.4 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.5 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use SDR 35 PVC for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

1. Use Heavy-Duty, top-loading classification cleanouts.

B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.

C. Set cleanout frames and covers in pavement with tops flush with pavement surface.

3.6 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."
B. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.7 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

1. Use warning tape over ferrous piping.

2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

3.8 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.

2. Defects requiring correction include the following:

 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.

4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.

2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.
6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 b. Option: Test concrete gravity sewer piping according to ASTM C 924.
7. Manholes: Perform hydraulic test according to ASTM C 969.

C. Leaks and loss in test pressure constitute defects that must be repaired.
D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.9 CLEANING

A. Clean dirt and superfluous material from interior of piping.

END OF SECTION 221313
This Page Intentionally Left Blank
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 B. Related Requirements:
 1. Section 260523 “Control-Voltage Electrical Power Cables” for control system,
 communications cables, and Class 1, 2 and 3 control cables.

1.3 DEFINITIONS
 A. VFC: Variable frequency controller.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For testing agency.
 B. Field quality-control reports.

1.6 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

12 May 2016

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260519 - 1
PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

B. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THW-2, Type THHN/THWN-2 and Type XHHW-2.

C. VFC Cable:
 1. Comply with UL 1277, UL 1685, and NFPA 70 for Type TC-ER cable.
 2. Type TC-ER with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger, except VFC cable, which shall be extra flexible stranded.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

12 May 2016

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

260519 - 2
D. Exposed Branch Circuits: Type THHN/THWN-2, single conductors in raceway.

E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

F. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, and strain relief device at terminations to suit application.

G. VFC Output Circuits: Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Provide continuous cable run between terminations.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 FIELD QUALITY CONTROL

A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

D. Test and Inspection Reports: Prepare a written report to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

E. Cables will be considered defective if they do not pass tests and inspections.
SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. UTP cabling.
 2. Low-voltage control cabling.
 3. Control-circuit conductors.
 4. Identification products.

1.3 DEFINITIONS
 A. EMI: Electromagnetic interference.
 B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
 C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.
 D. RCDD: Registered Communications Distribution Designer.
 E. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
 B. Source quality-control reports.
 C. Field quality-control reports.

12 May 2016

CONTROL-VOLTAGE ELECTRICAL POWER CABLES
260523 - 1
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to
 supervise on-site testing.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
 a qualified testing agency, and marked for intended location and application.

2.2 PERFORMANCE REQUIREMENTS

A. Flame Travel and Smoke Density in Plenums: As determined by testing identical products
 according to NFPA 262 by a qualified testing agency. Identify products for installation in
 plenums with appropriate markings of applicable testing agency.

 1. Flame Travel Distance: 60 inches or less.
 2. Peak Optical Smoke Density: 0.5 or less.
 3. Average Optical Smoke Density: 0.15 or less.

B. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As
determined by testing identical products according to UL 1666.

C. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum
 Building Spaces: As determined by testing identical products according to UL 1685.

2.3 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering
 products that may be incorporated into the Work include, but are not limited to the following:

 1. 3M.
 2. ADC.
 3. Alpha Wire Company.
 4. AMP NETCONNECT; a TE Connectivity Ltd. company.
 5. Belden CDT Networking Division/NORDX.
 7. CommScope, Inc.
 8. Draka USA.
 9. General Cable; General Cable Corporation.
 10. Genesis Cable Products; Honeywell International, Inc.
 11. KRONE Incorporated.
 12. Mohawk; a division of Belden Networking, Inc.
15. Siemon Co. (The).
16. Superior Essex Inc.
17. SYSTIMAX Solutions; a CommScope Inc. brand.

B. Description: 100-ohm, four-pair UTP.

2. Comply with TIA-568-C.1 for performance specifications.
3. Comply with TIA-568-C.2, Category 6 and Category 6A.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with NEMA WC 66, UL 444, and NFPA 70 for the following types:
 a. Communications, Plenum Rated: Type CMP complying with UL 1685.
 b. Communications, Plenum Rated: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 c. Communications, Riser Rated: Type CMR complying with UL 1666.
 d. Communications, Riser Rated: Type CMP, or Type CMR in listed plenum or riser communications raceway.
 e. Communications, Riser Rated: Type CMP or Type CMR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 f. Communications, General Purpose: Type CM or Type CMG; or Type CM, Type CMG, Type CMP, or Type CMR in listed communications raceways.
 g. Communications, General Purpose: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 h. Communications, Limited Purpose: Type CMX; or Type CM, Type CMG, Type CMP, or Type CMR.

2.4 UTP CABLE HARDWARE

A. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-C.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

B. Connecting Blocks 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 jacks where indicated.

C. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.
2.5 LOW-VOLTAGE CONTROL CABLE

A. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be twisted, 7/24 soft annealed copper stranding with a 2- to 2.5 inch lay.
 3. Conductor insulation shall have a nominal 15-mil thickness, construction from flame-retardant PVC.
 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red, and white.
 7. Furnish wire on spools.

2.6 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN-2-THWN-2 and Type XHHW-2, in raceway, complying with UL 44 and UL 83.

B. Class 2 Control Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway and Type XHHW-2, in raceway, complying with UL 44 and UL 83.

2.7 SOURCE QUALITY CONTROL

A. Testing Agency: Contractor to engage a qualified testing agency to evaluate cables.

B. Factory test UTP cables according to TIA-568-C.2.

C. Cable will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Test cables on receipt at Project site.
 1. Test each pair of UTP cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.
1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high and 2-1/2 inches deep.

B. Comply with TIA-569-B for pull-box sizing and length of conduit and number of bends between pull points.

C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Raceway Installation in Equipment Rooms:
 1. Extend conduits 3 inches above finished floor.
 2. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1 and NFPA 70.

B. General Requirements for Cabling:
 2. Cables may not be spliced.
 3. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems" and Ch. 6, "Optical Fiber Structured Cabling Systems." Install lacing bars and distribution spools.
 5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 7. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems" and Ch. 6, "Optical Fiber Structured Cabling Systems." Monitor cable pull tensions.
 8. Support: Do not allow cables to lay on removable ceiling tiles.
 9. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.

C. UTP Cable Installation:
 2. Do not untwist UTP cables more than 1/2 inch at the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:
 1. Install wiring in raceways. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."
3.4 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified for future use with a tag.

3.5 GROUNDING

A. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.

B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.6 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Identify data and communications system components, wiring, and cabling according to TIA-606-A; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Contractor shall engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:

1. Visually inspect UTP cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not after cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 260523
This Page Intentionally Left Blank
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions apply to this Section.

1.2 SUMMARY
 A. Section includes grounding systems and equipment.
 B. Section includes grounding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
 A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in
 "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
 B. Qualification Data: For testing agency and testing agency's field supervisor.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and
 maintenance manuals.
 1. Instructions for periodic testing and inspection of grounding features at grounding
 connections for separately derived systems based on NETA MTS.
Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.

Include recommended testing intervals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.2 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 4/0 AWG minimum.
 1. Bury at least 24 inches below grade.

C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

3.4 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
C. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.

1. Test Wells: Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

D. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

E. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

F. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

G. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each indicated item, extending around the perimeter of building.

1. Install tinned-copper conductor not less than No. 4/0 AWG for ground ring and for taps to building steel.
2. Bury ground ring not less than 24 inches from building's foundation.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
This Page Intentionally Left Blank
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. This Section includes the following:

1. Hangers and supports for electrical equipment and systems.
2. Construction requirements for concrete bases.

1.3 DEFINITIONS

A. EMT: Electrical metallic tubing.
B. IMC: Intermediate metal conduit.
C. RMC: Rigid metal conduit.

1.4 PERFORMANCE REQUIREMENTS

A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.

B. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.5 ACTION SUBMITTALS

A. Product Data: For the following:

1. Steel slotted support systems.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:

1. Trapeze hangers. Include Product Data for components.
2. Steel slotted channel systems. Include Product Data for components.
3. Equipment supports.
1.6 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 2. Channel Dimensions: Selected for applicable load criteria.

B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 3. Concrete Inserts: Steel slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 6. Toggle Bolts: All-steel springhead type.
2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with single-bolt conduit clamps.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that meet seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits.
 3. Metal wireways and auxiliary gutters.
 4. Surface raceways.
 5. Boxes, enclosures, and cabinets.
 6. Handholes and boxes for exterior underground cabling.

B. Related Requirements:

 1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

A. RGS: Rigid Galvanized Steel Conduit.

B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Seismic Qualification Certificates: For enclosures, cabinets, and conduit racks and their mounting provisions including those for internal components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

C. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. RGS: Comply with ANSI C80.1 and UL 6.

C. FMC: Comply with UL 1; zinc-coated steel.

D. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

E. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions, where installed, and including flexible external bonding jumper.
 2. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

F. Joint Compound RGS: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

C. LFNC: Comply with UL 1660.

D. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

E. Fittings for LFNC: Comply with UL 514B.
2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Hinged type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

D. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

F. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

G. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

H. Gangable boxes are prohibited.

I. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1, Type 3R, Type 4, and Type 12 with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.

2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: RGS.
 2. Concealed Conduit, Aboveground: RGS.
 3. Underground Conduit: RNC, Type EPC-40-PVC.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFNC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed and Subject to Severe Physical Damage: IMC. Raceway locations include the following:
 a. Equipment container.
 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 3. Damp or Wet Locations: RGS.
 4. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 3R in wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Support conduit within 12 inches of enclosures to which attached.

H. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

I. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

J. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

K. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

L. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

M. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

N. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

O. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

P. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

Q. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where an underground service raceway enters a building or structure.
2. Where otherwise required by NFPA 70.

R. Expansion-Joint Fittings:
1. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
2. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
3. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

S. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.

T. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

U. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

V. Locate boxes so that cover or plate will not span different building finishes.

W. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

X. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

Y. Set metal floor boxes level and flush with finished floor surface.

3.3 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. This Section includes the following:
 1. Conduit, ducts, and duct accessories for concrete-encased duct banks and in single duct runs.
 2. Handholes and boxes.

1.3 DEFINITION

A. RNC: Rigid nonmetallic conduit.

1.4 ACTION SUBMITTALS

A. Shop Drawings for Factory-Fabricated Handholes and Boxes Other Than Precast Concrete: Include dimensioned plans, sections, and elevations, and fabrication and installation details, including the following:
 1. Duct entry provisions, including locations and duct sizes.
 2. Cover design.
 4. Dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 QUALITY ASSURANCE

A. Comply with ANSI C2.
B. Comply with NFPA 70.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver ducts to Project site with ends capped. Store nonmetallic ducts with supports to prevent bending, warping, and deforming.
B. Store precast concrete underground utility structures at Project site as recommended by manufacturer to prevent physical damage. Arrange so identification markings are visible.

C. Lift and support precast concrete units only at designated lifting or supporting points.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Contracting Officer no fewer than two weeks in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Contracting Officer’s written permission.

1.8 COORDINATION

A. Coordinate layout and installation of ducts, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field.

B. Coordinate elevations of ducts and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of ducts and duct banks as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations from those indicated as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Contracting Officer.

PART 2 - PRODUCTS

2.1 CONDUIT

B. RNC: NEMA TC 2, Type EPC-40-PVC, UL 651, with matching fittings by same manufacturer as the conduit, complying with NEMA TC 3 and UL 514B.

2.2 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Strength tests of complete boxes and covers shall be by either an independent testing agency or the manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
2. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 UNDERGROUND DUCT APPLICATION

A. Ducts for Electrical Cables Over 600 V: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

B. Ducts for Electrical Feeders 600 V and Less: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

C. Underground Ducts for Telephone, Communications, or Data Utility Service Cables: RNC, NEMA Type EPC-40-PVC, in concrete-encased duct bank, unless otherwise indicated.

3.2 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restore surface features at areas disturbed by excavation and reestablish original grades, unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

C. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.

3.3 DUCT INSTALLATION

A. Slope: Pitch ducts a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope ducts from a high point in runs between two manholes to drain in both directions.

B. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 12.5 feet, both horizontally and vertically, at other locations, unless otherwise indicated.

C. Joints: Use solvent-cemented joints in ducts and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent ducts do not lie in same plane.

D. Duct Entrances to Existing Manholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch ducts, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell without reducing duct line slope and without forming a trap in the line.

2. Grout end bells into structure walls from both sides to provide watertight entrances.
E. Building Wall Penetrations: Make a transition from underground duct to rigid steel conduit at least 10 feet outside the building wall without reducing duct line slope away from the building, and without forming a trap in the line. Use fittings manufactured for duct-to-conduit transition. Conduit penetrations in building walls shall be sealed watertight.

F. Sealing: Provide temporary closure at terminations of ducts that have cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

G. Pulling Cord: Install 100-lbf-test nylon cord in ducts, including spares.

H. Concrete-Encased Ducts: Support ducts on duct separators.
 1. Separator Installation: Space separators close enough to prevent sagging and deforming of ducts, with not less than 5 spacers per 20 feet of duct. Secure separators to earth and to ducts to prevent floating during concreting. Stagger separators approximately 6 inches between tiers. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
 2. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of ducts as their temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing rod dowels extending 18 inches into concrete on both sides of joint near corners of envelope.
 3. Pouring Concrete: Spade concrete carefully during pours to prevent voids under and between conduits and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Use a plank to direct concrete down sides of bank assembly to trench bottom. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.
 4. Reinforcement: Reinforce concrete-encased duct banks where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
 5. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.
 6. Depth: Install top of duct bank at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles, unless otherwise indicated.
 7. Stub-Ups: Use manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. **Stub-Ups to Equipment:** For equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

8. **Warning Tape:** Bury warning tape approximately 12 inches above all concrete-encased ducts and duct banks. Align tape parallel to and within 3 inches of the centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.4 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground ducts and utility structures.
2. Pull aluminum or wood test mandrel through duct to prove joint integrity and test for out-of-round duct. Provide mandrel equal to 80 percent fill of duct. If obstructions are indicated, remove obstructions and retest.

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.6 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of ducts. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump. Remove foreign material.

END OF SECTION 260543
This Page Intentionally Left Blank
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Identification for raceways.
 2. Identification of power and control cables.
 3. Identification for conductors.
 5. Warning labels and signs.
 6. Instruction signs.
 7. Equipment identification labels.
 8. Miscellaneous identification products.

1.3 ACTION SUBMITTALS
 A. Product Data: For each electrical identification product indicated.

1.4 QUALITY ASSURANCE
 B. Comply with NFPA 70.
 D. Comply with ANSI Z535.4 for safety signs and labels.
 E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.5 COORDINATION
 A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

12 May 2016
B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

C. Coordinate installation of identifying devices with location of access panels and doors.

D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.

B. Colors for Raceways Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

C. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.

B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil-thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.

C. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeve, with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.

D. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeve with diameter sized to suit diameter of conductor it identifies and to stay in place by gripping action.
E. **Heat-Shrink Preprinted Tubes**: Flame-retardant polyolefin tube with machine-printed identification label. Sized to suit diameter of and shrinks to fit firmly around conductor it identifies. Full shrink recovery at a maximum of 200 deg F. Comply with UL 224.

F. **Marker Tapes**: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

G. **Write-On Tags**: Polyester tag, 0.015 inch thick, with corrosion-resistant grommet and cable tie for attachment to conductor or cable.

1. Marker for Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
2. Labels for Tags: Self-adhesive label, machine-printed with permanent, waterproof, black ink recommended by printer manufacturer, sized for attachment to tag.

2.4 **FLOOR MARKING TAPE**

A. 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.5 **UNDERGROUND-LINE WARNING TAPE**

A. Tape:

1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
2. Printing on tape shall be permanent and shall not be damaged by burial operations.
3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:

1. Comply with ANSI Z535.1 through ANSI Z535.5.
2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.6 **WARNING LABELS AND SIGNS**

B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.

C. Warning label and sign shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

12 May 2016 IDENTIFICATION FOR ELECTRICAL SYSTEMS 260553 - 3
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

3. Warning labels and signs for photovoltaic system per NFPA 70, Article 690.

2.7 INSTRUCTION SIGNS

A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 1. Engraved legend with black letters on white face.
 2. Punched or drilled for mechanical fasteners.
 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch.

2.9 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self extinguishing, one piece, self locking, Type 6/6 nylon.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. Plenum-Rated Cable Ties: Self extinguishing, UV stabilized, one piece, self locking.
 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.
2.10 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.

D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.

F. Attach plastic raceway and cable labels that are not self-adhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.

G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.

I. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

J. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.

K. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.
3.2 IDENTIFICATION SCHEDULE

A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:

1. PV System.
2. Power.

B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.

1. Color-Coding for Phase Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 b. Colors for 208/120-V Circuits:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 c. Colors for 480/277-V Circuits:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.

C. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive vinyl labels with the conductor or cable designation, origin, and destination.

D. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
F. Locations of Underground Lines: Identify with underground-line warning tape for power, lighting, communication, and control wiring and optical fiber cable.
 1. Limit use of underground-line warning tape to direct-buried cables.
 2. Install underground-line warning tape for both direct-buried cables and cables in raceway.

G. Workspace Indication: Install floor marking tape to show working clearances in the direction of access to live parts. Workspace shall be as required by NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

H. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 2. Identify system voltage with black letters on an orange background.
 3. Apply to exterior of door, cover, or other access.
 4. For equipment with multiple power or control sources, apply to door or cover of equipment including.

I. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.

J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 1. Labeling Instructions:
 a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.

 2. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
d. Switchgear.
e. Switchboards.
f. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
g. PV system boxes and enclosures.
h. Enclosed switches.
i. Enclosed circuit breakers.
j. Enclosed controllers.
k. Variable-speed controllers.
l. Push-button stations.
m. Contactors.
n. PV system inverter units.
o. Power-generating units.
p. Monitoring and control equipment

END OF SECTION 260553
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Outdoor motion sensors.
 4. Lighting contactors.

B. Related Requirements:

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 1. Interconnection diagrams showing field-installed wiring.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

A. Description: Solid state, with DPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
3. Time Delay: Fifteen second minimum, to prevent false operation.
5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.

2.2 OUTDOOR MOTION SENSORS

A. General Requirements for Sensors: Solid-state outdoor motion sensors.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Dual-technology (PIR and infrared) type, weatherproof. Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.. Comply with UL 773A.
3. Switch Rating:
 a. Lighting-Fixture-Mounted Sensor: Recommended by light fixture manufacturer as specified on light fixture schedule.
 b. Separately Mounted Sensor: As specified on plans.
4. Voltage: Match the circuit voltage type.
5. Detector Coverage as specified on plans.
6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
8. Concealed "off" time-delay selector at 30 seconds, and 5, 10, and 20 minutes.
9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
10. Operating Ambient Conditions: Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 deg F, rated as "raintight" according to UL 773A.

12 May 2016
2.3 LIGHTING CONTACTORS

A. Description: Electrically operated and mechanically held, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.

1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less total harmonic distortion of normal load current).
2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
3. Enclosure: Comply with NEMA 250.
4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.4 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.2 CONTACTOR INSTALLATION

A. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.3 WIRING INSTALLATION

A. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

1. For occupancy and motion sensors, verify operation at outer limits of detector range. Coordinate with Contracting Officer’s Representative to set time delay to suit wash rack operation.
2. For daylighting controls, adjust set points and deadband controls to suit wash rack operation.
3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

END OF SECTION 260923
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 2. Weather-resistant receptacles.
 3. Wall-switch and exterior occupancy sensors.

1.3 DEFINITIONS
 A. EMI: Electromagnetic interference.
 B. GFCI: Ground-fault circuit interrupter.
 C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
 D. RFI: Radio-frequency interference.
 E. TVSS: Transient voltage surge suppressor.
 F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS
 A. Coordination:
 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

12 May 2016
C. Samples: One for each type of device and wall plate specified, in each color specified.

1.6 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with the requirements in this Section.

2.3 STRAIGHT-BLADE RECEPTACLES

A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

2.4 GFCI RECEPTACLES

A. General Description:

1. Straight blade, non-feed-through type.
2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:

2.5 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch-thick, satin-finished, Type 302 stainless steel.
 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.6 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: Ivory, unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtailed.
4. Existing Conductors:
 5. Cut back and pigtail, or replace all damaged conductors.
 6. Straighten conductors that remain and remove corrosion and foreign matter.
 7. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 4. Connect devices to branch circuits using pigtailed that are not less than 6 inches in length.
 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtailed for device connections.
 8. Tighten unused terminal screws on the device.
 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.
3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
This Page Intentionally Left Blank
SECTION 263100 – PHOTOVOLTAIC SYSTEM EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY

A. Section Includes:
1. PV modules (laminates in mounting frames).
2. Inverters.
3. Mounting structures.

1.3 DEFINITIONS

A. CEC: California Energy Commission.
B. ETFE: Ethylene tetrafluoroethylene.
C. FEP: Fluorinated ethylene propylene.
D. IP Code: Required ingress protection to comply with IEC 60529.
E. MPPT: Maximum power point tracking.
F. PTC: USA standard conditions for PV.
G. PV: Photovoltaic.
H. STC: Standard Test Conditions defined in IEC 61215.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for PV panels.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
3. Coordinate paint colors with Contracting Officer prior to fabrication.
B. Shop Drawings: For PV modules and structures.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Detail fabrication and assembly.
 4. Include one-line diagrams for power, signal, and control wiring.
 5. Include foundation details.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For PV System, submit the following items to include in operation and maintenance manuals:
 1. Operation Instructions
 2. PV Module Warranty
 3. Inverter Warranty
 4. Support Structure Warranty
 5. Troubleshooting Guide for PV System
 6. Preventative Maintenance and Inspection Data, Including a Schedule for System Operator
 7. As-Built Drawings

1.7 WARRANTY

A. Manufacturer's Special Materials and Workmanship Warranty: Manufacturer agrees to repair or replace components of PV modules that fail in materials or workmanship within specified warranty period.
 1. Manufacturer's materials and workmanship warranties include, but are not limited to, the following:
 a. PV module warranty period shall be ten (10) years from date of substantial completion.
 b. Inverter warranty period shall be ten (10) years from date of substantial completion for defects in materials.

B. Manufacturer's Special Minimum Power Output Warranty: Manufacturer agrees to repair or replace components of PV modules that fail to exhibit the minimum power output within specified warranty period. Special warranty, applying to modules only, applies to materials only, on a prorated basis, for period specified.
1. Manufacturer's minimum power output warranties include, but are not limited to, the following warranty periods, from date of Substantial Completion:

 a. Specified minimum power output to 80 percent or more, for a period of 25 years.

C. Support structure warranty period shall be twenty (25) years from the date of substantial completion for coatings.

PART 2 - PRODUCTS

PERFORMANCE REQUIREMENTS

A. NRTL (Nationally Recognized Testing Laboratory) Listing: Entire assembly shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for electrical and fire safety, Class C, according to UL 1703.

2.2 SYSTEM DESCRIPTION

A. Grid-Tied PV System:

 1. Connected via a utility meter to the electrical utility.
 2. An array of modules to generate a total nominal 21.08kW (STC).
 3. System Components:

 b. PV modules.
 c. Array frame.
 d. Inverter.
 e. Overcurrent protection/combiner box.
 f. Mounting structure.

B. Photovoltaic System

 1. The Contractor shall perform all tasks and include all costs including, but not limited to, permit costs, connection fees, etc., necessary to procure, install and connect the PV System to the building’s power distribution system, as indicated in the contract documents, and to obtain acceptance and approval from the local electrical utility service provider to operate the PV system upon building completion and acceptance by the Government.

 2. Provide all necessary materials to fabricate a grid-tied photovoltaic system complete with mounting structure and all associated components necessary for a fully operational system in accordance with this section.

 3. Upon loss of utility power, PV System shall be automatically disconnected from the building electrical system. When utility power is restored, PV System shall be automatically reconnected.
2.3 MANUFACTURED UNITS

A. Cell Materials: Multi-crystalline modules.

B. Module Construction:
 1. Nominal Size: 39.05 inches wide by 77 inches long.
 2. Weight: 60.8 lb.

C. Front Panel: Fully tempered glass with anti-reflective coating.

D. Bypass Diode Protection: Internal.

E. Junction Box:
 1. Size: 1.25 by 6 by 5 inch.
 2. Fully potted, vandal resistant.
 3. IP Code: IP65.
 4. Flammability Test: UL 1703.

F. Output Cabling:
 1. 47.2 inch length cables.
 2. Quick, multi-contact, MC4-EV03 connectors.
 3. Two-Conductor Harness: No traditional return wire is needed from the end of a row back to the source combiner.

G. Series Fuse Rating: 15A.

2.4 CAPACITIES AND CHARACTERISTICS

A. Minimum Electrical Characteristics at STC:
 1. Rated Open Circuit Voltage (Voc): 45.5 V.
 2. Maximum System Voltage: 1000 V.
 3. Rated Short-Circuit Current (Isc): 8.85A AMPS.
 5. Maximum Power at STC (Pmax): 310 WATTS.

B. Additional Electrical Characteristics:
 1. Tolerance of Pmax: 0/+3 percent.
 4. Hailstone Impact Withstand: 1 inch diameter at 51 mph wind velocity.
 5. Series Fuse Rating: 15 AMP.

C. Normal Operating Temperature Characteristics (NOTC):
 1. Temperature at Nominal Operating Cell Temperature: 45 deg C +/-2 deg C.
2. Electrical Characteristics at NOTC:
 a. Rated Open Circuit Voltage \(V_o \): 41.5V.
 b. Rated Short Circuit Current \(I_{sc} \): 7.16A.
 c. Maximum Power Current \(I_{mp} \): 6.68A.
 d. Maximum Power at (NOTC): 226W

2.5 MODULE FRAMING

A. PV laminates mounted in anodized extruded-aluminum frames.
 1. Entire assembly UL listed for electrical and fire safety, Class C, according to UL 1703, complying with IEC 61215.
 2. Frame strength exceeding requirements of certifying agencies in subparagraph above.
 a. Alloy and temper recommended by framing manufacturer for strength, corrosion resistance, and application of required finish.
 b. Color: As indicated by manufacturer's designations.

2.6 ARRAY CONSTRUCTION

A. Framing:
 1. Material: Galvanized steel.
 2. Maximum System Weight: Less than 4 lb/sq. ft.
 3. Minimum Distance to Connectors: 36 inches.
 4. Raceway Cover Plates: Aluminum or Galvanized steel.

2.7 INVERTER

A. Control Type: Pulse width modulation control.

B. Control Type: Maximum power point tracker control.

C. Inverter Electrical Characteristics:
 4. Maximum Input Current: 70A.
 5. Number of String Inputs: 8 (Integrated String Combiner).
 6. CEC Rated Power: As required.
 8. Maximum Output Current: 25.5A.
 9. Peak Efficiency: 97.4 percent.
 10. CEC Weighted Efficiency: 97 percent.
 11. CEC Night Tare Loss: 2 watts.
D. Operating Conditions:
 1. Operating Ambient Temperatures: Minus 13 to plus 140 deg F.
 2. Storage Temperature: Minus 22 to plus 158 deg F.
 3. Relative Humidity: 0 to 95 percent, noncondensing.

E. Enclosure:
 1. NEMA 250, Type 4.
 2. Cooling Methods:
 a. Fan convection cooling with filter.
 3. Protective Functions:
 a. AC over/under voltage.
 b. AC over/under frequency.
 c. Ground over current.
 d. Overtemperature.
 e. AC and dc overcurrent.
 f. DC over voltage.
 4. Standard liquid crystal display, four lines, 20 characters, with user display and on/off toggle switch.

F. Disconnects:
 1. Low-voltage disconnect.
 2. Low-voltage reconnect.
 3. High-temperature disconnect.
 4. High-temperature reconnect.

G. Regulatory Approvals:
 1. IEEE 1547.1.
 2. IEEE 1547.3.
 3. UL 1741.

2.8 SYSTEM OVERCURRENT PROTECTION

A. Combiner Box:
 1. With inverter integrated string combiner, provide string combiner with 8 fused positions minimum. For non-integrated string combiner PV inverter, provide combiner boxes as required by the PV module and/or Inverter manufacturer. Combiner boxes to be furnished complete with bus-bars, or fuse holders, and bus-bar safety shields in a NEMA 4X Fiberglass enclosure with hinged door with lockable hardware. Combiner boxes to be UL 1741 listed.
2.9 TRANSITION BOXES

A. Provide transition boxes as required to covert from PV Cable or USE-2 conductors in free-air to THHN-THWN conductors in conduit. Transition boxes to be NEMA 3R minimum.

2.10 MOUNTING STRUCTURES

A. Provide support structure engineered and designed per structural and architectural drawings to support the photovoltaic system above wash rack metal building system structural frame.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrate areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Do not begin installation until mounting surfaces have been properly prepared.

C. If preparation of mounting surfaces is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

D. Examine modules and array frame before installation. Reject modules and arrays that are wet, moisture damaged, or mold damaged.

E. Examine supports and supporting structures for suitable conditions where PV system will be installed.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FIELD QUALITY CONTROL

A. Inspection: Verify that units and controls are properly installed, connected, and labeled and that interconnecting wires and terminals are identified.

B. Pretesting: Align and adjust system and pretest components, wiring, and functions to verify that they comply with specified requirements. Replace malfunctioning or damaged items. Retest until satisfactory performance and conditions are achieved. Prepare equipment for acceptance and operational testing.

C. Test Schedule: Schedule tests after pretesting has successfully been completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days notice of test schedule.

D. Operation Tests: Perform operation system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.
E. Test Results: Record test results.

F. Retest: Correct deficiencies identified by tests and observations and pretest until specified requirements are met.

G. Commissioning: Coordinate with manufacturer instructions and Contracting Officer’s Representative for commission requirements.

3.3 DEMONSTRATION

A. Train Government maintenance personnel on procedures and schedules for troubleshooting servicing, and maintaining equipment. Coordinate with Contractor Officer’s Representative for demonstration and training.

B. Demonstrate methods of determining optimum adjustment of components and settings of system controls.

C. Review data maintenance manual.

D. Upon completion of the installation, the contractor shall perform startup by an authorized dealer service representative. Contractor shall supply three (3) maintenance and instruction books to the Contracting Officer’s Representative during startup and demonstration. In addition, the contractor shall furnish training in the amount of two eight-hour sessions to the Government on startup, operation, maintenance and troubleshooting of the compliance system.

E. The contractor shall be required to demonstrate the systems performance using the systems metering equipment. The contractor shall insure that the system meets the required output and shall make any changes necessary to achieve the required output of the system.

END OF SECTION 263100
SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.
 B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color Rendering Index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. LED: Light-emitting diode.
 F. Lumen: Measured output of lamp and luminaire, or both.
 G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.

D. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 1. Include Samples of luminaires and accessories involving color and finish selection.

E. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.

F. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Details drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Lighting luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Certificates: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

12 May 2016 LED INTERIOR LIGHTING 265119 - 2
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

D. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

E. Product Certificates: For each type of luminaire.

F. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior lighting luminaires in room or module mockups, complete with power and control connections.

12 May 2016 LED INTERIOR LIGHTING 265119 - 3
2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY
A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
B. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Recessed Fixtures: Comply with NEMA LE 4.
C. Bulb shape complying with ANSI C79.1.
D. Lamp base complying with ANSI C81.61.
E. CRI of minimum 80. CCT of 3000 K or as specified on fixture schedule.
F. Rated lamp life of 50,000 hours.

G. Internal driver.

H. Nominal Operating Voltage: 120 V ac.
 1. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

I. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Powder-coat finish.

2.3 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under
 operating conditions, and designed to permit relamping without use of tools. Designed to
 prevent doors, frames, lenses, diffusers, and other components from falling accidentally during
 relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to
 yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Powder-coat finish.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels
 where they will be readily visible to service personnel, but not seen from normal viewing angles
 when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.
2.4 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.5 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
E. Wall-Mounted Luminaire Support:
 1. Attached to a minimum 20 gauge backing plate attached to wall structural members.

F. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with
 approved outlet box and accessories that hold stem and provide damping of luminaire
 oscillations. Support outlet box vertically to building structure using approved devices.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire
 support for suspension for each unit length of luminaire chassis, including one at each
 end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods
 to building structure.

G. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four
 locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and
 building structure in a minimum of four locations, spaced near corners of luminaire.

H. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and
 Cables" for wiring connections.

3.3 IDENTIFICATION
A. Identify system components, wiring, cabling, and terminals. Comply with requirements for
identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL
A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after
 electrical circuitry has been energized, test units to confirm proper operation.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 ADJUSTING
A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion,
 provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied
 conditions. Make up to two visits to Project during other-than-normal hours for this purpose.
 Some of this work may be required during hours of darkness.
1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
SECTION 265600 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Exterior luminaires with lamps and ballasts.
 2. Poles and accessories.
 B. Related Sections:
 1. Section 265119 "LED Interior Lighting" for exterior luminaries normally mounted on
 exterior surfaces of buildings.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color-rendering index.
 C. LED: Light emitting diode.
 D. LER: Luminaire efficacy rating.
 E. Luminaire: Complete lighting fixture, including ballast housing if provided.
 F. Pole: Luminaire support structure, including tower used for large area illumination.
 G. Standard: Same definition as "Pole" above.

1.4 ACTION SUBMITTALS
 A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting
 unit designation. Include data on features, accessories, finishes, and the following:
 1. Physical description of luminaire, including materials, dimensions, effective projected
 area, and verification of indicated parameters.
 2. Details of attaching luminaries and accessories.
 3. Details of installation and construction.
4. Luminaire materials.
5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, drivers, and accessories.
 a. Manufacturer Certified Data: Photometric data shall be certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
6. Ballasts, including energy-efficiency data.
7. Lamps and LED’s, including life, output, CCT, CRI, lumens, and energy-efficiency data.
8. Materials, dimensions, and finishes of poles.
9. Means of attaching luminaries to supports, and indication that attachment is suitable for components involved.
10. Anchor bolts for poles.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Anchor-bolt templates keyed to specific poles and certified by manufacturer.

1.5 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.
B. Warranty: Sample of special warranty.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For luminaires and poles to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: One for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Glass and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Ballasts: One for every 100 of each type and rating installed. Furnish at least one of each type.
1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by manufacturers' laboratories that are accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Package aluminum poles for shipping according to ASTM B 660.

B. Store poles on decay-resistant-treated skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.

C. Retain factory-applied pole wrappings on metal poles until right before pole installation. For poles with nonmetallic finishes, handle with web fabric straps.

1.10 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.

1. Warranty Period for Luminaires: Ten years from date of Substantial Completion. The first five years of the warranty shall fully cover luminaire and/or driver modules with the remaining five years prorated.

2. Warranty Period for Metal Corrosion: Five years from date of Substantial Completion.

3. Warranty Period for Color Retention: Five years from date of Substantial Completion.

4. Warranty Period for Poles: Repair or replace lighting poles and standards that fail in finish, materials, and workmanship within manufacturer's standard warranty period, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR LUMINAIRES

A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
1. LER Tests LED Fixtures: Where LER is specified, test according to NEMA LE 5.

B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.

E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.

G. Exposed Hardware Material: Stainless steel.

H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

I. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.

J. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
2. Class I, Clear Anodic Finish: AA-M32C22A41 (Mechanical Finish: medium satin; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 a. Color: Black.

L. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
1. Label shall include the following lamp and ballast characteristics:
 a. "USES ONLY" and include specific lamp type.
 b. CCT and CRI for all luminaires.

2.2 LED FIXTURES
A. Provide LED fixtures utilizing LED components with a minimum of 50000 HR of operation before the light output drops below 70 percent of the initial lumens.
 1. LED Assembly and Driver Module shall be field-replaceable with separable connector.

2.3 GENERAL REQUIREMENTS FOR POLES AND SUPPORT COMPONENTS
A. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.
B. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 1. Materials: Shall not cause galvanic action at contact points.
 3. Anchor-Bolt Template: Plywood or steel.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION
A. Install lamps in each luminaire.
B. Fasten luminaire to indicated structural supports.

3.2 CORROSION PREVENTION
A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

3.3 GROUNDING
A. Ground metal poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole unless otherwise indicated.
2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

B. Ground nonmetallic poles and support structures according to Section 260526 "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole.
 2. Install grounding conductor and conductor protector.
 3. Ground metallic components of pole accessories and foundations.

3.4 FIELD QUALITY CONTROL

A. Inspect each installed fixture for damage. Replace damaged fixtures and components.

B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
 1. Verify operation of photoelectric controls.

C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 265600
SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Excavating and filling for rough grading the Site.
2. Preparing subgrades for slabs-on-grade and pavements.
3. Excavating and backfilling for buildings and structures.
4. Drainage course for concrete slabs-on-grade.
5. Subbase course for concrete pavements.
6. Subbase course and base course for asphalt paving.
7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.2 DEFINITIONS

A. Backfill: Soil material used to fill an excavation.
 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Contracting Officer’s Representative (COR). Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by COR. Unauthorized excavation, as well as remedial work directed by COR, shall be without additional compensation.

G. Fill: Soil materials used to raise existing grades.
H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct preexcavation conference at Project site.

1.4 INFORMATIONAL SUBMITTALS

A. Material test reports.

1.5 FIELD CONDITIONS

A. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth-moving operations.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, and SP, according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 3 inches any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, or a combination of these groups.

1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

D. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 294/D 2940M 0; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.
E. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

F. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

G. Drainage Course: Narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and zero to 5 percent passing a No. 8 sieve.

2.2 ACCESSORIES

A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored to comply with local practice or requirements of authorities having jurisdiction.

B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored to comply with local practice or requirements of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.

B. Protect and maintain erosion and sedimentation controls during earth-moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
3.3 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch, or to remove all existing fill, whichever is greater. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work. If any cavities are encountered, excavate the cavity to the width of the footing, then fill with crushed aggregate with CBR of 40.

3.4 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.5 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

2. If loose/soft materials are encountered at utility invert elevations, the trench shall be extended 2 feet below the invert, the bottom of the trench lined with geo fabric, backfilled with engineered fill. The geotechnical fabric should be wrapped over the engineered fill.

3.6 SUBGRADE INSPECTION

A. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired dump truck to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

B. Reconstruct subgrades damaged by rain, accumulated water, or construction activities, as directed by COR, without additional compensation.

12 May 2016

EARTH MOVING

312000 - 4
3.7 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by COR.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by COR.

3.8 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

D. Trenches under Roadways: Provide 4-inch- thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 033000 "Cast-in-Place Concrete."

E. Initial Backfill: Place and compact initial backfill of subbase material, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.

1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

F. Final Backfill: Place and compact final backfill of satisfactory soil to final subgrade elevation.

G. Warning Tape: Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 SOIL FILL

12 May 2016
A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under building slabs, use engineered fill.
5. Under footings and foundations, use engineered fill.

3.11 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.

1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.12 COMPACTION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698:

1. Under structures, building slabs, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 92 percent.
3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
4. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent.

3.13 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:

1. Turf or Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.14 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Shape subbase course and base course to required crown elevations and cross-slope grades.
2. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
3. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.15 FIELD QUALITY CONTROL

A. Special Inspections: Contractor will engage a qualified special inspector to perform inspections:

B. Testing Agency: Contractor will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by COR.

E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.16 PROTECTION
A. Protecting Graded Areas: Protect newly graded areas from traffic and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.17 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Government’s property.

END OF SECTION 312000
SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Hot-mix asphalt patching.
 2. Hot-mix asphalt paving.

B. Related Requirements:
 1. Section 312000 "Earth Moving" for subgrade preparation, fill material, unbound-aggregate subbase and base courses, and aggregate pavement shoulders.
 2. Section 321373 "Concrete Paving Joint Sealants" for joint sealants and fillers at pavement terminations.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by authorities having jurisdiction or the DOT of state in which Project is located

B. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of Standard Specification of State of Hawaii Department of Transportation for asphalt paving work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

PART 2 - PRODUCTS

2.1 AGGREGATES

A. Coarse Aggregate: ASTM D 692/D 692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.
B. Fine Aggregate: ASTM D 1073 [or AASHTO M 29, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.

C. Mineral Filler: ASTM D 242/D 242M or AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material.

2.2 ASPHALT MATERIALS

A. Asphalt Binder: AASHTO M 320, PG 64-22

B. Tack Coat: AASHTO M 140 emulsified asphalt, or AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.

2.3 MIXES

A. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes meeting the applicable requirements of Standard Specification of State of Hawaii Department of Transportation and complying with the following requirements:

1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
2. Base Course: Meeting the requirements of Hawaii DOT section 301
3. Surface Course: Meeting the requirements of Hawaii DOT section 401

PART 3 - EXECUTION

3.1 PATCHING

A. Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.

B. Tack Coat: Before placing patch material, apply tack coat uniformly to vertical asphalt surfaces abutting the patch. Apply at a rate of 0.05 to 0.15 gal./sq. yd.

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

C. Placing Patch Material: Fill excavated pavement areas with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

3.2 SURFACE PREPARATION

A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
B. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd.
 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.3 PLACING HOT-MIX ASPHALT

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 1. Spread mix at a minimum temperature of 250 deg F.
 2. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.

C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.4 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 1. Clean contact surfaces and apply tack coat to joints.
 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AIMS-22, for both "Ending a Lane" and "Resumption of Paving Operations."

3.5 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 1. Complete compaction before mix temperature cools to 185 deg F.

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:

1. Average Density: 92 percent of reference maximum theoretical density according to ASTM D 2041, but not less than 90 percent or greater than 96 percent.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

F. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

G. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.6 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:

1. Base Course: Plus or minus 1/2 inch.
2. Surface Course: Plus 1/4 inch, no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:

1. Base Course: 1/4 inch.
2. Surface Course: 1/8 inch.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.

B. Replace and compact hot-mix asphalt where core tests were taken.

C. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

END OF SECTION 321216
SECTION 321313 - CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes Concrete Paving.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.3 QUALITY ASSURANCE
A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

1.4 PRECONSTRUCTION TESTING
A. Preconstruction Testing Service: Engage a qualified independent testing agency to perform preconstruction testing on concrete paving mixtures.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL
A. ACI Publications: Comply with ACI 301 unless otherwise indicated.

2.2 CONCRETE MATERIALS
A. Cementitious Materials: Use the following cementitious materials, of same type, brand, and source throughout Project:
 1. Portland Cement: ASTM C 150/C 150M, gray or white portland cement Type II
B. Normal-Weight Aggregates: ASTM C 33/C 33M, Class 4S, Class 4M or Class 1N, uniformly graded. Provide aggregates from a single source.
C. Air-Entraining Admixture: ASTM C 260/C 260M.

D. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.

E. Water: Potable and complying with ASTM C 94/C 94M.

2.3 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

2.4 Retain "White, Waterborne, Membrane-Forming Curing Compound" Paragraph below if required. Retain if more reflectivity is RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.

2.5 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.

B. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 5-1/2 percent plus or minus 1-1/2 percent.

C. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.

D. Concrete Mixtures: Normal-weight concrete.
 1. Maximum W/C Ratio at Point of Placement: 0.45.
 2. Slump Limit: 4 inches, plus or minus 1 inch.
2.6 CONCRETE MIXING
 A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Proof-roll prepared subbase surface below new concrete pavements to identify soft pockets and areas of excess yielding. Contractor shall remove topsoil, proof roll with a minimum of 10 passes using a 15 ton compactor under the observation of contractor’s geotechnical engineer to check for loose, soft or weak areas. Any loose, soft or weak areas shall be excavated and replaced with compacted structural fill to the satisfaction of the geotechnical engineer.

3.2 PREPARATION
 A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION
 A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
 B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 JOINTS
 A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
 C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.
 D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, to match jointing of existing adjacent concrete paving.
 E. Edging: After initial floating, tool edges of paving, gutters, curbs, and joints in concrete with an edging tool to a 3/8-inch radius. Repeat tooling of edges after applying surface finishes.

12 May 2016
3.5 CONCRETE PLACEMENT

A. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

B. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.

C. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

D. Screed paving surface with a straightedge and strike off.

E. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleedwater appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

3.6 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleedwater sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Coarse-Textured Broom Finish: Provide a coarse finish by striating float-finished concrete surface 1/16 to 1/8 inch deep with a stiff-bristled broom, perpendicular to line of traffic.

3.7 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound or a combination of these.
3.8 PAVING TOLERANCES

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-feet- long; unleveled straightedge not to exceed 1/2 inch.
4. Joint Spacing: 3 inches.
5. Contraction Joint Depth: Plus 1/4 inch, no minus.

3.9 REPAIR AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Architect.

B. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

C. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 321313
SECTION 321373 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Cold-applied joint sealants.
 2. Joint-sealant backer materials.
 3. Primers.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Paving-Joint-Sealant Schedule: Include the following information:
 1. Joint-sealant application, joint location, and designation.
 2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Product certificates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D 5893/D 5893M, Type NS.

12 May 2016 CONCRETE PAVING JOINT SEALANTS 321373 - 1
2.3 JOINT-SEALANT BACKER MATERIALS

A. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

B. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.

C. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.4 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

PART 3 - EXECUTION

3.1 INSTALLATION OF JOINT SEALANTS

A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Cleaning of Joints: Clean out joints immediately to comply with joint-sealant manufacturer's written instructions.

C. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer.

D. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions.

E. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of joint-sealant backings.
2. Do not stretch, twist, puncture, or tear joint-sealant backings.
3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

F. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:

1. Place joint sealants so they fully contact joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

G. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skimming or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:

1. Remove excess joint sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

H. Provide joint configuration to comply with joint-sealant manufacturer’s written instructions unless otherwise indicated.

I. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.

END OF SECTION 321373
SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Chain-link fences.
 2. Horizontal-slide gates.
 B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete.

1.3 PREINSTALLATION MEETINGS
 A. Preinstallation Conference: Conduct conference at Project site.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components
 and profiles, and finishes for the following:
 a. Fence and gate posts, rails, and fittings.
 b. Chain-link fabric, reinforcements, and attachments.
 c. Gates and hardware.
 B. Shop Drawings: For each type of gate assembly.
 1. Include plans, elevations, sections, details, and attachments to other work.
 2. Include accessories, hardware, gate operation, and operational clearances.
 C. Delegated-Design Submittal: For structural performance of chain-link fence and gate
 frameworks, including analysis data signed and sealed by the qualified professional engineer
 responsible for their preparation.
1.5 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of chain-link fence and gate.

B. Product Test Reports: For framework strength according to ASTM F 1043, for tests performed by manufacturer and witnessed by a qualified testing agency or a qualified testing agency.

C. Field quality-control reports.

1.6 FIELD CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.7 WARRANTY

A. Special Warranty: Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Failure to comply with performance requirements.
 b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a professional engineer to design gate frameworks.

B. Structural Performance: Chain-link fence and gate frameworks shall withstand the design wind loads and stresses for fence height(s) and under exposure conditions indicated according to ASCE/SEI 7.

1. Design Wind Load: 105 mph.

 a. Minimum Post Size: Determine according to ASTM F 1043 for post spacing not to exceed 10 feet for Material Group IA, ASTM F 1043, Schedule 40 steel pipe.
 b. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified.
2.2 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist according to "CLFMI Product Manual" and requirements indicated below:

1. Fabric Height: 96 inches. Contractor to verify height of existing fence and match, plus or minus four inches.
2. Steel Wire for Fabric: Wire diameter of 0.192 inch.
 a. Mesh Size: 2 inches.
 b. Aluminum-Coated Fabric: ASTM A 491, Type I, 0.40 oz./sq. ft.
3. Selvage: Twisted top and knuckled bottom.

2.3 FENCE FRAMEWORK

A. Posts and Rails: ASTM F 1043 for framework, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: 96 inches. Contractor to verify height of existing fence and match height.
 a. Heavy-Industrial-Strength.
 b. Material: Group IA, round steel pipe, Schedule 40
 c. End, Corner, and Pull Posts: 4.0 inches in diameter.
2. Horizontal Framework Members: Top rails according to ASTM F 1043. Contractor to match existing size top rail.
 a. Type A: Not less than minimum 2.0-oz./sq. ft. average zinc coating according to ASTM A 123/A 123M or 4.0-oz./sq. ft. zinc coating according to ASTM A 653/A 653M.
 b. Type B: Zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film.
 c. External, Type B: Zinc with organic overcoat, consisting of a minimum of 0.9 oz./sq. ft. of zinc after welding, a chromate conversion coating, and a clear, verifiable polymer film. Internal, Type D, consisting of 81 percent, not less than 0.3-mil-thick, zinc-pigmented coating.
 d. Type C: Zn-5-Al-MM alloy, consisting of not less than 1.8-oz./sq. ft. coating.
 e. Coatings: Any coating above.

2.4 HORIZONTAL-SLIDE GATES

A. General: ASTM F 1184 for gate posts and single sliding gate types.

1. Classification: Type II Cantilever Slide, Class 1 with external roller assemblies.
2. Gate Frame Width and Height: 96 inches. Contractor to verify height of existing fence and match, plus or minus four inches.

B. Pipe and Tubing:

3. Gate Frames and Bracing: Round tubular steel.

C. Frame Corner Construction: Welded.

D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches as required to attach barbed wire assemblies.

E. Hardware

2. Latch: Permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
3. Lock: Manufacturer's standard internal device.

F. Provide fittings according to ASTM F 626.

G. Post Caps: Provide for each post.

1. Provide line post caps with loop to receive top rail.

H. Rail and Brace Ends: For each gate, corner, pull, and end post.

I. Rail Fittings: Provide the following:

1. Top Rail Sleeves: Aluminum Alloy 6063 not less than 6 inches long.

J. Tension and Brace Bands: Aluminum Alloy 6063.

K. Tension Bars: Aluminum length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

L. Truss Rod Assemblies: Mill-finished aluminum rod and turnbuckle or other means of adjustment.

M. Barbed Wire Arms: Aluminum, with clips, slots, or other means for attaching strands of barbed wire, and means for attaching to posts for each post unless otherwise indicated, and as follows:

1. Provide line posts with arms that accommodate top rail or tension wire.
2. Provide corner arms at fence corner posts unless extended posts are indicated.
3. Single-Arm Type: Type I, slanted arm on new end posts, Type II, vertical arm on new gate.
N. Tie Wires, Clips, and Fasteners: According to ASTM F 626.
 1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, according to the following:
 a. Aluminum: ASTM B 211; Alloy 1350-H19; 0.148-inch diameter, mill-finished wire.

O. Finish:
 1. Aluminum: Mill finish.

2.5 BARBED WIRE
A. Steel Barbed Wire: ASTM A 121, two-strand barbed wire, 0.099-inch-diameter line wire with 0.080-inch-diameter, four-point round barbs spaced not more than 5 inches o.c.
 1. Aluminum Coating: Type A.
B. Clips: Stainless steel, 0.065 inch thick by 0.375 inch wide, capable of withstanding a minimum 150-lbf pull load to limit extension of coil, resulting in a concertina pattern when deployed.
C. Tie Wires: Stainless steel, 0.065 inch in diameter.

2.6 GROUT AND ANCHORING CEMENT
A. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout, recommended in writing by manufacturer, for exterior applications.
B. Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating, and that is recommended in writing by manufacturer for exterior applications.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and conditions, with Installer present, for compliance with requirements for, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.
 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 CHAIN-LINK FENCE INSTALLATION

A. Install chain-link fencing according to ASTM F 567 and more stringent requirements specified.
 1. Install fencing and gate as indicated on the drawings.

B. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacing indicated, in firm, undisturbed soil.

C. Post Setting: Set posts in concrete into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Exposed Concrete: Extend 2 inches above grade; shape and smooth to shed water.

D. Terminal Posts: Install terminal end and gate posts according to ASTM F 567.

E. Top Rail: Install according to ASTM F 567, maintaining plumb position and alignment of fence posts.

F. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 2-inch bottom clearance between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

G. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric according to ASTM F 626. Bend ends of wire to minimize hazard to individuals and clothing.
 1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.

H. Fasteners: Install nuts for tension bands and carriage bolts on the side of fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.

I. Barbed Wire: Install barbed wire uniformly spaced. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

3.3 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation.

3.4 ADJUSTING
A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

END OF SECTION 323113
This Page Intentionally Left Blank
SECTION 330500 - COMMON WORK RESULTS FOR UTILITIES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:

1. Piping joining materials.
2. Sleeves.
3. Identification devices.
5. Piping system common requirements.
6. Equipment installation common requirements.
7. Concrete bases.
8. Metal supports and anchorages.

1.2 DEFINITIONS

A. Exposed Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.

B. Concealed Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

PART 2 - PRODUCTS

2.1 PIPING JOINING MATERIALS

A. Solvent Cements for Joining Plastic Piping:

1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.2 GROUT

A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Install piping according to the following requirements and utilities Sections specifying piping systems.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on the Coordination Drawings.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping to permit valve servicing.

E. Install piping at indicated slopes.

F. Install piping free of sags and bends.

G. Install fittings for changes in direction and branch connections.

H. Select system components with pressure rating equal to or greater than system operating pressure.

I. Sleeves are not required for core-drilled holes.

J. Permanent sleeves are not required for holes formed by removable PE sleeves.

K. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.

 1. Cut sleeves to length for mounting flush with both surfaces.

 a. Exception: Extend sleeves installed in floors of equipment areas or other wet areas 2 inches above finished floor level.

 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.

 a. PVC Pipe Sleeves: For pipes smaller than NPS 6.

L. Verify final equipment locations for roughing-in.

M. Refer to equipment specifications in other Sections for roughing-in requirements.
3.2 PIPING JOINT CONSTRUCTION

A. Join pipe and fittings according to the following requirements and utilities Sections specifying piping systems.

B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Grooved Joints: Assemble joints with grooved-end pipe coupling with coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.

H. Soldered Joints: Apply ASTM B 813 water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.

I. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
2. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
3. PVC Nonpressure Piping: Join according to ASTM D 2855.

J. Plastic Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.

1. Plain-End PE Pipe and Fittings: Use butt fusion.
2. Plain-End PE Pipe and Socket Fittings: Use socket fusion.

3.3 PIPING CONNECTIONS

A. Make connections according to the following, unless otherwise indicated:
1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
3. Install dielectric fittings at connections of dissimilar metal pipes.

3.4 EQUIPMENT INSTALLATION

A. Install equipment level and plumb, unless otherwise indicated.

B. Install equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference with other installations. Extend grease fittings to an accessible location.

C. Install equipment to allow right of way to piping systems installed at required slope.

D. Equipment: Install engraved plastic-laminate sign or equipment marker on or near each major item of equipment.

 1. Lettering Size: Minimum 1/4 inch high for name of unit if viewing distance is less than 24 inches, 1/2 inch high for distances up to 72 inches, and proportionately larger lettering for greater distances. Provide secondary lettering two-thirds to three-fourths of size of principal lettering.
 2. Text of Signs: Provide name of identified unit. Include text to distinguish among multiple units, inform user of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations.

E. Adjusting: Relocate identifying devices that become visually blocked by work of this or other Divisions.

3.5 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of base.
 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Section 033000 "Cast-in-Place Concrete."

12 May 2016

COMMON WORK RESULTS FOR UTILITIES

330500 - 4
3.6 GROUTING

A. Mix and install grout for equipment base bearing surfaces, pump and other equipment base plates, and anchors.

B. Clean surfaces that will come into contact with grout.

C. Provide forms as required for placement of grout.

D. Avoid air entrapment during placement of grout.

E. Place grout, completely filling equipment bases.

F. Place grout on concrete bases and provide smooth bearing surface for equipment.

G. Place grout around anchors.

H. Cure placed grout.

END OF SECTION 330500
This Page Intentionally Left Blank